
noisir la ou les bonnes réponses. En ca	QCM s d'erreur, revoir le parag	raphe du cours associé.	QCM interactif
	A	В	C
Principe d'un titrage			€ Cours 1 p. 94 et 2 p. 95
2 La solution titrante est celle :	dont on connaît la concentration.	dont on cherche la concentration.	qui est placée dans la burette.
3 La solution titrée est celle :	dont on cherche la concentration.	qui est placée dans le bécher.	dont on connaît la concentration.
À l'équivalence, le mélange :	contient du réactif titré.	contient du réactif titrant.	ne contient ni l'un ni l'autre.
S Avant l'équivalence, le mélange réactionnel contient :	du réactif titrant.	du réactif titré.	des produits de la réaction.
Après l'équivalence, le mélange réactionnel contient :	le réactif titrant ajouté après l'équivalence.	du réactif titré.	uniquement des produits.
Titrage conductimétrique			① Cours 3 p. 96
On peut réaliser un titrage conductimétrique si :	la réaction support de titrage met en jeu des ions.	la réaction support de titrage est de type acide-base.	on peut mesurer la conductance du mélange réactionne
8 On ajoute de l'eau distillée dans le bécher pour :	avoir un volume équivalent proche de 10,0 mL.	pouvoir négliger la dilution lors de l'ajout de solution titrante.	que la conductivité soit plus élevée.
Le volume équivalent sur la courbe de titrage est l'abscisse :	de son minimum.	de son maximum.	de l'intersection des droites qui modélisent les point expérimentaux.
Titrage pH-métrique			€ Cours 4 p. 97
Un titrage pH-métrique implique :	que le réactif titrant soit un acide si le réactif titré est une base.	que des ions soient mis en jeu.	que les réactifs titrant et titré soient des acides.
Le graphique ci-dessous : 10 pH 8 dpH dV V(en mL) 0 4 8 12 16 20	correspond au titrage d'une base par un acide.	correspond au titrage d'un acide par une base.	présente deux courbes de titrage.
2 Le volume équivalent vaut :	11,5 mL.	14,0 mL.	16,5 mL.

23 Titrage conductimétrique de l'acide éthanoïque

On réalise le titrage conductimétrique d'un volume V = 10,0 mL d'une solution S d'acide éthanoïque (CH₂CO₂H) de concentration c inconnue par une solution d'hydroxyde de sodium (Na $^{+}_{(aq)}$, HO $^{-}_{(aq)}$) de concentration apportée $c_{B} = 0,100$ mol·L $^{-1}$ (doc. 1).

Données Conductivités molaires ioniques () Rabat IV

- Écrire la réaction support du titrage, supposée totale. Pourquoi est-il possible de suivre ce titrage par conductimétrie?
- 🚺 Déterminer le volume équivalent sur cette courbe.
- \bigcirc On détermine précisément le volume équivalent $V_{\rm F}$ = 13,3 mL. Quelle est la concentration c de la solution S d'acide éthanoïque ?

Doc. 1 Courbe de titrage conductimétrique.

24 lons sulfate dans une eau minérale

On se propose de déterminer la concentration en masse C_{m1} des ions sulfate présents dans une eau minérale.

Pour cela, on réalise un titrage des ions sulfate $\mathsf{SO_4^{2-}}_{(\mathsf{aq})}$ contenus dans un volume $V_1 = 25,0$ mL d'eau minérale par une solution aqueuse de chlorure de baryum (Ba $^{2+}_{(aq)}$, 2 Cl $^-_{(aq)}$) de concentration $c = 2,50 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$, avec suivi conductimétrique.

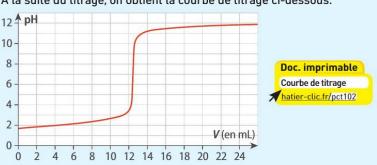
Le volume V1 est complété par 150 mL d'eau distillée ajoutés au mélange réactionnel.

Sur la courbe de titrage, on détermine un volume équivalent $V_{\rm F} = 14,3 \, {\rm mL}.$

- 📵 Quelle est la solution titrante et la solution titrée ? Préciser leur place dans le dispositif de titrage.
- 🚹 Préciser la nature des réactifs titrant et titré, puis écrire la réaction support du titrage. Quelles conditions doit-elle satisfaire?
- 🕒 À quoi sert l'ajout de 150 mL d'eau distillée ?
- $oldsymbol{0}$ Déterminer la concentration c_1 , puis la concentration en masse $C_{\rm m1}$ des ions sulfate dans cette eau minérale.
- 🔼 Cette eau minérale est-elle potable relativement aux normes de l'Union européenne?

Les eaux minérales fortement minéralisées contiennent parfois des ions à des concentrations excédant les normes de potabilité. Il ne faut donc pas en boire autant que de l'eau du robinet.

Données


- Les ions Ba²⁺(aq) et SO₄²⁻(aq) réagissent en formant un précipité blanc de sulfate de baryum BaSO_{4(s)}.
- Masse molaire de l'ion sulfate : $M = 96,1 \text{ g} \cdot \text{mol}^{-1}$
- D'après les normes de potabilité de l'Union européenne, la concentration en masse en ion sulfate d'une eau potable ne doit pas dépasser 250 mg·L-1.

25 Titrage pH-métrique d'une solution d'acide chlorhydrique

L'acide chlorhydrique est vendu comme détartrant, décapant ou additif pour piscine. Il est également présent dans l'estomac.

On souhaite vérifier la concentration d'une solution S_A d'acide chlorhydrique. On réalise un titrage pH-métrique d'un volume V = 20,0 mL de solution S_A . La solution titrante est une solution d'hydroxyde de sodium (Na+(aq)), $HO_{(aq)}^{-}$) de concentration $c_B = 0.12 \text{ mol} \cdot L^{-1}$. On la prépare à partir d'une solution d'hydroxyde de sodium commerciale, de densité d = 1,2 et de pourcentage massigue 20 %.

À la suite du titrage, on obtient la courbe de titrage ci-dessous.

- \bigcirc Rédiger le protocole chiffré de préparation de $V_1 = 50,0$ mL de solution
- 🕞 Indiquer les réactifs titré et titrant, ainsi que les couples acide-base auxquels ils appartiennent. En déduire la réaction support du titrage.
- $_{f G}$ Déterminer la valeur du volume équivalent $V_{{f F}}.$
- 🚺 En déduire la concentration c de la solution titrée.
- Expliquer qualitativement l'allure de la courbe de titrage.
- 🚺 Déterminer la composition du mélange réactionnel pour un volume de solution titrante introduit $V_B = 15,0$ mL.

Données

- Masse molaire de l'hydroxyde de sodium NaOH:
- $M_{NaOH} = 40.0 \text{ g} \cdot \text{mol}^{-1}$
- [®] Masse volumique de l'eau : $\rho_{eau} = 1,00 \times 10^3 \text{ g} \cdot L^{-1}$