Forces des acides et des base vignettes

Déterminons x_{max} en supposant que l'acide est totalement consommé.

C2-V1

	CH ₃ CO ₂ H _(aq)	+ H ₂ O _(I)		+ H ₃ O ⁺ (aq)
0	1,0 × 10 ⁻³	excès	0	0
X	1,0 × 10 ⁻³ - ×	excès	×	X
Xf	$1.0 \times 10^{-3} - x_f$	excès	Xf	Xf
X _{max}	$1.0 \times 10^{-3} - x_{\text{max}}$	excès	X _{max}	X _{max}

8,3

$$1.0 \times 10^{-3} - x_{max} = 0$$
 soit $x_{max} = 1.0 \times 10^{-3}$ mol

b. Déterminons l'avancement final (réel) xf en se basant sur le pH mesuré.

$$\underline{\mathbf{x}_f} = \mathbf{n} (H_3O^+)_f = [H_3O^+]_f . V = C^0.10^{-pH}. V = 10^{-3.4} \times 0,1000$$
 soit $\mathbf{x}_f = 4,0 \times 10^{-5} \text{mol}$

 $CH_3CO_2H_{(aq)} + H_2O_{(1)} \rightleftharpoons CH_3CO_2^{-}_{(aq)} + H_3O^{+}_{(aq)}$ • Ex:

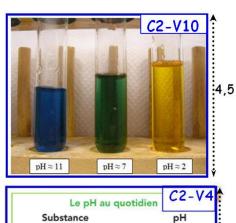
C2-V2

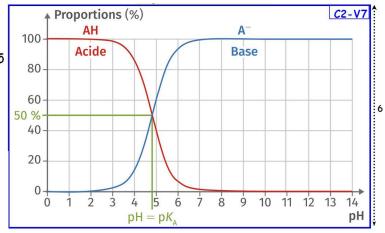
On a vu $x_{max} = 1.0 \times 10^{-3}$ mol et $x_f = 4.0 \times 10^{-5}$ mol

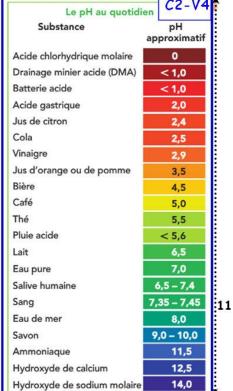
donc
$$\underline{\tau}_f = \frac{x_f}{x_{max}} = \frac{4.0 \times 10^{-5}}{1.0 \times 10^{-3}} \approx 0.040$$

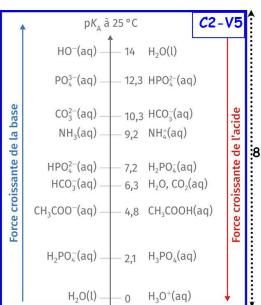
4,0 % de l'acide est déprotoné

Ex:

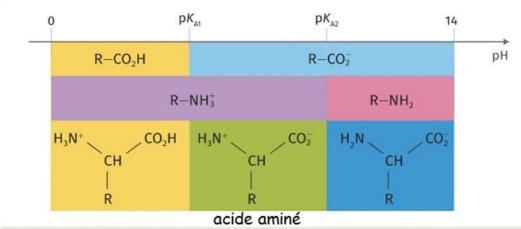

La réaction de $CH_3CO_2H_{(aq)}$ dans l'eau a pour constante d'équilibre $K_a = 1,8.10^{-5}$ (à $25^{\circ}C$) reprenons le cas de 1.0×10^{-3} mol d'acide éthanoïque dans 0.1L l'eau: on avait $x_f = 4.0 \times 10^{-5}$ mol

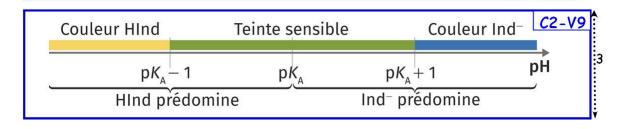

	CH ₃ CO ₂ H _(aq)	+ H ₂ O _(I)		+ H ₃ O ⁺ (aq)
0	1,0 × 10 ⁻³	excès	0	0
Xf	$1.0 \times 10^{-3} - x_f$ $\approx 1.0 \times 10^{-3} \text{mol}$	excès	x_f = 4,0 × 10 ⁻⁵ mol	x_f = 4,0 × 10 ⁻⁵ mol


Si on est bien à l'équilibre, il faut que le Q_r vaille K_a = 1,8.10⁻⁵, Vérifions le...


$$Q_{r} = \frac{\left(\frac{[CH_{3}CO_{2}^{-}]}{1}\right)^{1} \cdot \left(\frac{[H_{3}O_{1}^{+}]}{1}\right)^{1}}{\left(\frac{[CH_{3}CO_{2}^{-}]H]}{1}\right)^{1}} = \frac{\left(\frac{\frac{4,0x10^{-5}}{0,1}}{1}\right)^{1} \cdot \left(\frac{\frac{4,0x10^{-5}}{0,1}}{1}\right)^{1}}{\left(\frac{\frac{1,0x10^{-3}}{0,1}}{1}\right)^{1}} \approx 1,8.10^{-5} \approx K_{a}$$

$$\left(\frac{\frac{1,0x10^{-3}}{0,1}}{1}\right)^{1} \qquad \text{I'équilibre est bien atteint !}$$




10

C2-V8

Le groupe carboxyle possède des propriétés acides et le groupe amine des propriétés basiques. Ainsi, un acide α -aminé peut exister sous trois formes et son diagramme de prédominance sera :

La forme possédant une charge positive et une charge négative est appelée zwitterion.

