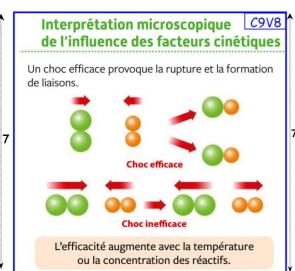
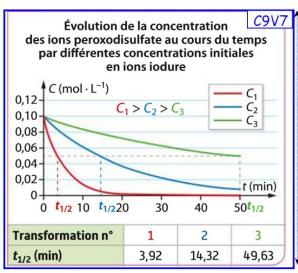
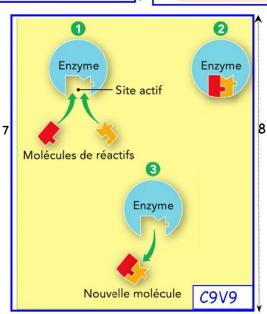
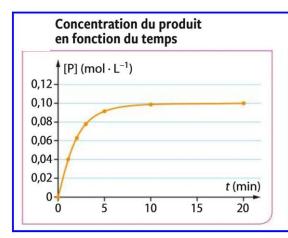
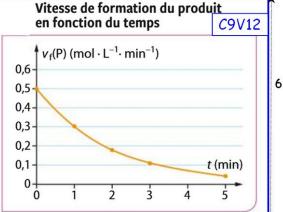

C9 (4) CINETIQUE CHIMIQUE











C9V13			
Ces réactions chimiques sont des actes élémentaires	Molécularité de l'acte	Nombre de liaison rompues et/ou créées	
tBu — $C\ell(\ell) \to tBu^+_{\Box}(aq) + C\ell^-(aq)$	1	1 liaison est rompue	
$tBu_{\square}^+(aq) + OH^-(aq) \to tBu-\!\!\!-\!\!\!OH(aq)$	2	1 liaison est créée	
CH_3 — $Br(\ell) + HO^-(aq)$ $\rightarrow CH_3$ — $OH(aq) + Br^-(aq)$	2	1 liaison est rompue 1 liaison est créee	

Pour vérifier que la vitesse de disparition d'un réactif A suit une loi de vitesse d'ordre 1, trois méthodes sont possibles :

Méthode 🕕

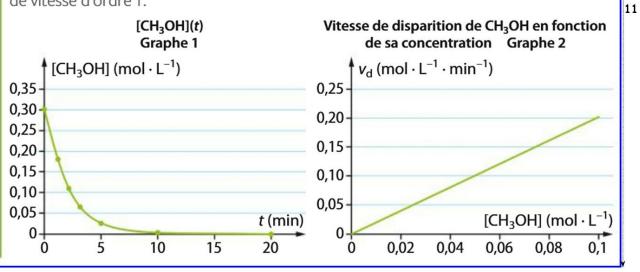
Vérifier que l'évolution de la concentration en fonction du temps [A](t) est modélisable par une fonction exponentielle.

Méthode 2

Vérifier que : ln([A](t)) = f(t)est une fonction affine.

Méthode 🚯

Vérifier que la vitesse de disparition du réactif en fonction de sa concentration est une fonction linéaire.


RÉACTION D'ORDRE 1

$$a A_{(aq)} \rightarrow b B + c C$$

 $v_{D(A)} = -\frac{d[A]}{dt} \text{ et } v_{D(A)} = k [A]$

Donc
$$\frac{d[A]}{dt} + k[A] = 0$$
 (équation différentielle)

et
$$[A](t) = [A]_0 e^{-kt}$$
 (solution)
donc: $ln([A](t)) = ln([A]_0) - kt$ $ln([A]_0)$ Coefficient
 k : constante de vitesse en s^{-1}
 $[A]_0$: concentration initiale en A

L'évolution de la concentration en méthanol au cours du temps suit une décroissance exponentielle (**graphe 1**). L'évolution de la vitesse de disparition en fonction de la concentration est une fonction linéaire : il y a proportionnalité entre les deux grandeurs (**graphe 2**). La réaction chimique modélisant la transformation du méthanol suit une loi de vitesse d'ordre 1.

12

EXEMPLE Le mécanisme réactionnel de la synthèse du 2-méthyl-propan-2-ol, que l'on note couramment tBuOH, se décompose en deux actes élémentaires :

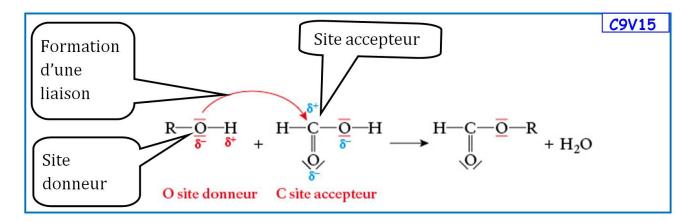
Équation de la réaction

 $tBu-C\ell(\ell) + HO^-(aq) \rightarrow tBu-OH(aq) + C\ell^-(aq)$

Acte élémentaire n° 1

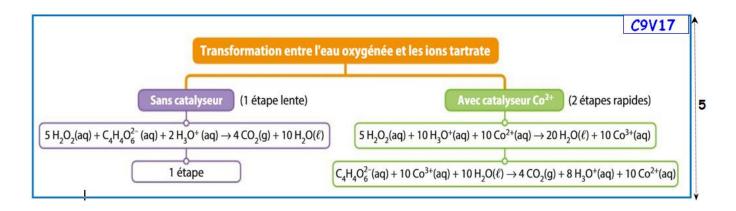
 tBu — $\mathsf{C}\ell(\ell) \to \mathsf{tBu}_{\square}^+(\mathsf{aq}) + \mathsf{C}\ell^-(\mathsf{aq})$

C9V14


7

Acte élémentaire n° 2

$$\mathsf{tBu}_{\square}^{+}(\mathsf{aq}) + \mathsf{OH}^{-}(\mathsf{aq}) \rightarrow \mathsf{tBu} - \mathsf{OH}(\mathsf{aq})$$


On observe que l'espèce tBu⁺ n'apparaît pas dans l'équation de réaction.

Elle est produite par l'acte élémentaire n° 1 et consommée par l'acte élémentaire n° 2 : c'est un intermédiaire réactionnel.

EXEMPLE Mécanisme réactionnel de la réaction chimique modélisant la transformation chimique entre le 2-chloro-2-méthylpropane, communément appelé chlorure de tertiobutyle, tBuCl et les ions hydroxydes:

Acte élémentaire	Mécanisme réactionnel associé et décrit à l'aide des flèches courbes $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
tBu—C $\ell(\ell)$ → tBu $_{\square}^{+}$ (aq) + C ℓ^{-} (aq)		
$tBu_{\square}^{+}(aq) + OH^{-}(aq) \rightarrow tBu-OH(aq)$	$\begin{array}{cccc} \text{CH}_3 & \oplus & & \text{CH}_3 & \overline{\underline{O}} - \text{H} \\ \text{CH}_3 & \text{CH}_3 & & \text{CH}_3 & & \text{CH}_3 \end{array}$	

